Bago University Department of Chemistry Second Semester Examination, September 2019

Second Year BSc (Geology Specialization) Answer any six Questions

Chem 2004 Chemistry II Time Allowed: (3) hours

1. (a) Fill in the blanks with the correct word(s), unit(s), and etc., as necessary.

- (ii) The coordination ratio of Rutile structure (TiO₂) is _____.
- (iii) The study of a chemical reaction is fundamental concern to a chemist from —— aspects.
- (iv) A temperature increase favours an —— reaction.
- (v) The catalyst does not alter the value of equilibrium constant for any reaction.
- (vi) Both K_p and K_c do not vary with change of for ideal gas.
- (b) Select the correct statement(s), word(s), unit(s) and etc., given in the followings.
 - (i) Crystal are classified into (eight, six, seven) different crystal system.
 - (ii) The stoichiometry ratio of MgO is (2:2, 3:3, 1:1).
 - (iii) A complex reaction occurs in (two, more, two or more) steps.
 - (iv) The unit of 'k' for third order reaction is (mol⁻²dm⁶time⁻¹, mol⁻²dm⁶, time⁻¹).
 - (v) If (Q < K, Q > K, Q = K), the forward reaction predominates until equilibrium is established.
 - (vi) Chemical equilibrium is a (reverse, dynamic, activated) process.
- 2. (a) Illustrate the structure of NaCl and calculate the coordination ratio of this NaCl.
 - (b) Draw the structure of the following;
 - (i) Primitive cell

- (iii) All face centered unit cell
- (ii) Body-centered unit cell
- (iv) Face centered A or B or C unit cell
- 3. (a) Describe the Wurtzite structure and show that the stoichiometry ratio of Zn:S is 1:1.
 - (b) Determine the net number of Na⁺ and Cl⁻ ions in the NaCl unit cell.
- 4. (a) Discuss the factors affecting of the reaction rate and explain the nature of reactants.
 - (b) Explain about the order of a reaction summarily.

- 5. (a) Derive the integrated rate equation for a second order reaction.
 - (b) Give three examples for second order reactions with relevant equations and names.
- 6. (a) Write short notes on some of the properties of two equilibrium constants $(K_p \text{ and } K_c)$.
 - (b) Derive the relationship between the equilibrium constant in terms of partial pressure (K_p) and the equilibrium constant in terms of concentration (K_c) .
- 7. (a) The degree of dissociation of 2.40 moles of hydrogen iodide at 448 °C was found to be 22 percent. Calculate the number of moles of hydrogen iodide, hydrogen and iodine formed at equilibrium. Also calculate the equilibrium constant for the dissociation reaction.
 - (b) For the reaction: d + f = g + h, give the expression for K_c and K_p . What are the units for K_c and for K_p ? If in the above reaction $P_d = 0.40$ atm, $P_f = 0.30$ atm, $P_g = 0.20$ atm and $P_h = 0.10$ atm, calculate K_p .
