Bago University

Department of Mathematics

First Semester Examination, March 2019

Second Year (B.Sc)
(Mathematics Specialization)

Math 2105

Theory of Sets I

Time Allowed: (3) hours

Answer All Questions.

1.(a) Define the equivalent sets.

Suppose that $N = \{1, 2, 3, ...\}$ and $E = \{2, 4, 6, ...\}$. Prove that N is equivalent to E.

(b) Prove that $[0,1] \sim (0,1)$.

2.(a) Show that $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$, set of infinite sequence, is denumerable.

(b) Let a and b be any two real numbers with a < b. Prove that the closed interval [a,b] has the power of continuum and has the cardinality c.

3.(a) Prove that every subset of a denumerable set is either finite or denumerable.

(b) For any cardinal numbers α , β , γ , prove that (i) $\alpha + \beta = \beta + \alpha$,

(ii) $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ and

(iii) $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.

4.(a) Define a partial order in a set.

Let \mathcal{A} be the family of sets. Prove that the relation in \mathcal{A} defined by "x is a subset of y" is a partial order in \mathcal{A} .

(b) Let \mathcal{A} be the family of all subsets A of the natural numbers N where A has the following properties: A is finite and the greatest common divisor of the elements of A is 1.

(i) State whether or not each of the following subsets of N belongs to A:

(a) $\{2,3,8\}$

 $(b){2,3,5,8}$

 $(c) \{2,5\}$

(d) {2,3,4,5, ...}

 $(e) \{4,6,8\}$

 $(f) \{2,3\}.$

(ii) Order \mathcal{A} by set inclusion, i. e., $X \leq Y$ if $X \subset Y$, and let \mathcal{B} be the subfamily of \mathcal{A} which consists of the sets in (i) which belong to \mathcal{A} . Construct a diagram of \mathcal{B} .

5.(a) Let $B = \{1, 2, 3, 4, 6\}$ be ordered as follows:

(i) Find all the minimal elements of B.

(ii) Find all the maximal elements of B.

(iii) Does B have a first element?

(iv) Does B have last element?

P.T.O

Let $\mathcal B$ be the family of all non-empty totally ordered subsets of B and let $\mathcal B$ be partially ordered by set inclusion.

- (v) Find all the minimal elements of B. (vi) Find all the maximal elements of B.
- (vii) Does B have a first element?
- (viii) Does B have last element?
- (b) Define the first and last elements. Let $V = \{a, b, c, d, e, f\}$ be ordered as follows:

- (i) Find all the minimal elements of V. (ii) Find all the maximal elements of V.
- (iii) Does V have a first element? (iv) Does V have a last element? Let V be the family of all non-empty totally ordered subsets of V and let V be ordered by set inclusion.
- (v) Find all the minimal elements of \mathcal{V} . (vi) Find all the maximal elements of \mathcal{V} . (vii) Does \mathcal{V} have a first element? (viii) Does \mathcal{V} have a last element?
- 6.(a)Let A be an ordered set and, for any element $a \in A$, let S(a) be the set of elements which precede a, i.e., $S(a) = \{x/x \in A, x \le a\}$. Let $\mathcal{A} = \{S(a)\}_{a \in A}$, the family of all sets S(a), be partially ordered by set inclusion. Prove that A is similar to \mathcal{A} .
 - (b) Give an example of an ordered set X = (A, R) which is similar to $Y = (A, R^{-1})$, the set A with the inverse order.
