Bago University Department of Mathematics Second Semester Examination, September 2019

Second Year (B. Sc) (Mathematics Specialization) Math 2111

Theory of Sets II

Answer All Questions.

Time Allowed: (3) Hours

- 1.(a) Let S be a subset of a well-ordered set A with the following properties:
 - (i) $a_0 \in S$
 - (ii) $s(a) \subset S$ implies $a \in S$.

Prove that S = A.

- (b) Prove that a well-ordered set cannot be similar to one of its initial segments.
- 2.(a) Let A be a well-ordered set, let B be a subset of A, and let the function $f:A \to B$ be a similarity mapping of A into B. Prove that $a \lesssim f(a)$ for every $a \in A$.
 - (b) Define the ordinal number of a well-ordered set. Let $\lambda = \text{ord } (A)$ and let $\mu < \lambda$. Prove that there is a unique initial segment s(a) of A such that $\mu = \text{ord } (s(a))$.
- 3.(a) Let A be a well-ordered set and let S be a subset of A with the properties that $a \le b$ and $b \in S$ implies $a \in S$. Prove that S = A or S is an initial segment of A.
 - (b) Suppose that A is a well-ordered set and B is similar to A. Prove that B is a well-ordered set.
- 4.(a) Let A and B be well-ordered sets and let

$$S = \left\{ x \mid x \in A, \ s(x) \simeq s(y) \text{ where } y \in B \right\}$$

$$T = \left\{ y \mid y \in B, \ s(y) \simeq s(x) \text{ where } x \in A \right\}. \text{ Prove that } S \simeq T.$$

- (b) Prove by giving a counter-example, that the operation of addition for ordinal numbers is not commutative.
- 5.(a) For any ordinal number ω , prove that $\omega + \omega = \omega 2$ with and without using the left distributive law.
 - (b) Let λ be any ordinal number. Prove that $\lambda + 1$ is the immediate successor of λ .
- 6.(a) Prove that the Axiom of Choice is equivalent to Zermelo's Postulate.
 - (b) Let B be a partially ordered set. Prove that there exists a totally ordered subset A of B such that A is not a proper subset of any other totally ordered subset of B.