Bago University

Department of Mathematics

First Semester Examination, March 2019

First Year (B.Sc)

Math 1102

(Mathematics Specialization)

Trigonometry and Differential Calculus

Time Allowed: (3) hours

Answer All Questions.

1. (a) Find the slope of the curve $y = x^3 - 12x$ at the given point P(1, -11) and an equation of tangent line to the curve at this point.

(b) Find the limits; (i) $\lim_{h\to 0} \frac{\sqrt{5h+4}-2}{h}$, (ii) $\lim_{x\to 4} \frac{4-x}{5-\sqrt{x^2+9}}$.

- 2. (a) Using the Sandwich Theorem, if $2-x^2 \le g(x) \le 2\cos x$ for all x, find $\lim g(x)$.
 - (b) Define f(1) in a way that extends $f(s) = \frac{s^3 1}{s^2 1}$ to be continuous at s = 1.
- 3. (a) Show that (i) $\lim_{h\to 0} \frac{\cos h 1}{h} = 0$ (ii) $\lim_{x\to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$

 - (b) Let $f(x) = 2x^2, x \ge 0$ find the value of $f^{-1}(x)$. Evaluate $\frac{df}{dx}$ at x = 5 and $\frac{df^{-1}}{dx}$ at x = f(5), show that $\frac{df^{-1}}{dx} = \frac{1}{\underline{df}}$ at this point.
- 4. (a) Use by logarithmic differentiation, find $\frac{dy}{dt}$ if $y = \frac{(x^2+1)(x+3)^{\frac{1}{2}}}{x-1}, x > 1$.
 - (b) Find $\frac{dy}{dr}$ or $\frac{dy}{dt}$ if (i) $y=t\sqrt{\ln t}$
- (ii) $y = 3^{\sin x}$ (iii) $y = \tan^{-1} \sqrt{x+1}$.
- 5. (a) Use by L'Hospital's rule, find (i) $\lim_{x\to\infty} (\ln x)^{\frac{1}{x}}$, (ii) $\lim_{\theta\to\frac{\pi}{2}} \frac{2\theta-\pi}{\cos(2\pi-\theta)}$.
 - (b) Use the definitions of cosh x and sinh x to show that (i) sinh2x = 2 sinhx coshx,(ii) $cosh^2x - sinh^2x = 1$.
- 6. (a) Find the Taylor series generated by $f(x) = x^4 + x^2 + 1$ at a = -2.
 - (b) Find the Maclaurin series for the function $f(x) = e^{-x}$.
